T. N. Margulis and Mark S. Fischer

Contribution from the Department of Chemistry, Brandeis University, Waltham, Massachusetts 02154. Received August 29, 1966

Abstract: Crystals of *trans*-1,3-cyclobutanedicarboxylic acid are monoclinic, space group $P2_1/c$, with a = 5.452, b = 7.813, c = 8.131 A; $\beta = 107.22^{\circ}$ (two molecules/cell). The crystal structure, determined by X-ray diffraction, contains chains of hydrogen-bonded molecules. The cyclobutane ring is planar with C-C single bond lengths of 1.567 ± 0.006 and 1.552 ± 0.006 A.

The structure of simple cyclobutane derivatives is I of interest because two different conformations have been observed. Planar rings have been found in compounds such as tetraphenylcyclobutane,^{1,2} the photodimer of cyclopentenone,³ and tetracyanocyclobutane.⁴ Puckered rings have been found in octachlorocyclobutane,^{1,5} anemomin,⁶ and the cis and trans isomers of 1,2-dibromo-1,2-dicarbomethoxycyclobutane.7 Studies in the gas phase and in liquid crystals indicate that cyclobutane,^{8,9} bromocyclobutane,¹⁰ and octafluorocyclobutane¹¹ are also puckered. Another structural problem concerns the length of the C-C single bond in cyclobutane rings. Values as high as 1.60 A have been reported, but in most cases the results have not been of the highest precision. We have determined the crystal structure of trans-1,3cyclobutanedicarboxylic acid in order to provide accurate structural parameters.

Experimental Section

The synthesis of trans-1,3-cyclobutanedicarboxylic acid was reported by Deutch and Buchman¹² who showed that the synthesis of Markownikoff and Krestownikoff¹³ was incorrect; the latter had prepared 1-methyl-1,2-cyclopropanedicarboxylic acid. An authentic sample of *trans*-1,3-cyclobutanedicarboxylic acid (mp 190°) prepared by Buchman was obtained through the courtesy of Professor K. N. Trueblood of U.C.L.A. A set of X-ray diffraction photographs was collected by the equiinclination Weissenberg technique and used to solve the structure. The final refinement was carried out with data from a Picker manual diffractometer equipped with a full circle goniometer, scintillation counter, and pulse-height analyzer. The crystal used was a tiny block with no dimension greater than 0.1 mm. Intensities were gathered by the stationary-crystal-stationary-counter method using Cu K α (λ = 1.5418 A) radiation. The intensities were converted to structure factors with no correction for absorption.

- (6) I. L. Karle and J. Karle, *ibid.*, 20, 555 (1966).
- (7) I. L. Karle, J. Karle, and K. Britts, J. Am. Chem. Soc., 88, 2918 (1966).
- (8) A. Almenningen and O. Bastiansen, Acta Chem. Scand., 15, 711 (1961).
- (9) L. C. Snyder and S. Meiboom, Chem. Eng. News, 44, 51 (April 25, 1966).
- (10) W. G. Rothchild and B. P. Dailey, J. Chem. Phys., 36, 2931 (1962).
- (11) H. P. Lemaire and R. L. Livingston, J. Am. Chem. Soc., 74, 5732 (1952). (12) D. H. Deutsch and E. R. Buchman, Experientia, 6, 462 (1950).
- (13) W. Markownikoff and A. Krestownikoff, Ann., 208, 333 (1881).

Crystal Data

Crystals of *trans*-1,3-cyclobutanedicarboxylic acid are monoclinic with $a = 5.452 \pm 0.005, b = 7.813 \pm 0.005$ $0.005, c = 8.131 \pm 0.008 \text{ A}; \beta = 107.22 \pm 0.15^{\circ}.$ The space group based on systematically absent reflections is $P2_1/c$. Assuming two molecules/unit cell the calculated density is 1.45 g/cm^3 .

Determination of the Structure

In space group $P2_1/c$ with two molecules per cell, each molecule must be centrosymmetric such that the center of symmetry of the molecule coincides with a center of symmetry of the unit cell. We applied the symbolic addition procedure,¹⁴ using the film data, and obtained eight sets of possible signs. Eight electron-density maps were calculated, none of which gave a reasonable structure. However, the y and z coordinates of the large peaks in these maps were similar, and the resulting two-dimensional structure was refined by least squares¹⁵ to a value of $R = \Sigma ||F_o|$ – $|F_{\rm c}||/\Sigma|F_{\rm o}|$ of 0.24. The x coordinates were easily obtained from the expected geometry of the molecule resulting in a structure which refined to R = 0.15.

We were later shown by an anonymous referee that the symbolic addition procedure could be applied with immediate success. Using reflections 150, 111, and 413 to define the origin and assigning letters to reflections $36\overline{3}$, 013, and $21\overline{7}$, the signs of 57 reflections with E larger than 1.5 could be determined. The five largest peaks in an E map, calculated with the unknown letters all +, corresponded to the five heavy atoms.

The final refinement was accomplished by fullmatrix, least-squares calculations using 362 nonzero independent structure factors measured with the diffractometer. The function minimized was $\Sigma(F_o F_{\rm c}$)². Atomic scattering factors for neutral atoms were taken from the "International Tables for X-ray Crystallography."¹⁶ After five cycles of refinement of carbon and oxygen coordinates and anisotropic temperature factors in the form $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{12}hk + \beta_{23}kl + \beta_{13}hl)]$, R was 0.09. The three largest peaks in a difference map¹⁵ calculated at this stage could be attributed to the ring hydrogen atoms. The next three peaks could not be hydrogen since they

⁽¹⁾ T. N. Margulis, Acta Cryst., 19, 857 (1965).

⁽²⁾ J. D. Dunitz, ibid., 2, 1 (1949).

⁽³⁾ T. N. Margulis, *ibid.*, 18, 742 (1965).
(4) B. Greenberg and B. Post, Abstracts of the Annual Meeting of the American Crystallographic Association, Austin, Texas, 1966. (5) T. B. Owen and J. L. Hoard, Acta Cryst., 4, 172 (1951).

⁽¹⁴⁾ See, e.g., I. L. Karle and J. Karle, Acta Cryst., 19, 92 (1965).

⁽¹⁵⁾ A modified version of the program of Gantzel, Sparks, and Trueblood was used for all least-squares calculations. Fourier series were evaluated with a program by A. Zalkin.

^{(16) &}quot;International Tables for X-ray Crystallography," Vol. III, Kynoch Press, Birmingham, 1962, p 202.

Table I. Carbon and Oxygen Parameters^a

Atom	x	у	2	β_{11}	β_{22}	β_{33}	β_{12}	β_{23}	β_{13}
C(1)	0.1901	-0.0489	0.0707	0.030	0.0149	0.0090	0.001	0.003	-0.001
C(2)	-0.0853	-0.1232	0.0212	0.039	0.0149	0.0106	-0.007	0.004	0.002
C(3)	0.3228	-0.0299	0.2589	0.032	0.0141	0.0107	0.003	0.003	0.000
O(1)	0.2282	-0.0693	0.3713	0.040	0.0277	0.0095	-0.022	0.005	0.001
O(2)	0.5529	0.0383	0.2915	0.036	0.0357	0.0103	-0.025	0.002	-0.000
Estimated Standard Deviations \times 10 ⁴									
C(1)	7	5	4	20	8	6	20	10	10
C(2)	8	5	5	20	9	8	20	20	10
C(3)	7	5	5	20	8	7	20	20	10
O (1)	5	4	3	10	8	5	20	10	10
O(2)	6	5	3	10	9	5	20	10	10

^a Anisotropic temperature factors are in the form $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{12}hk + \beta_{23}kl + \beta_{13}hl)]$.

occurred between bonded carbon atoms. The seventh strongest peak corresponded to the acid hydrogen. With the parameters of all the atoms including hydrogen adjusted by least squares, a final value for R of 0.050 was obtained. Initially, isotropic temperature factors were allowed to vary for each hydrogen, but this procedure resulted in the acid hydrogen oscillating perpendicular to the O-H bond and its *B* increasing without limit. In the final refinement this hydrogen atom was assigned a *B* value of 4.0 A², while the *B*'s of the ring hydrogens were allowed to vary. The final structure parameters are given in Tables I and II. Observed and calculated structure factors are listed in Table III.

Figure 1. The crystal structure viewed along [010].

Discussion

Each molecule of *trans*-1,3-cyclobutanedicarboxylic acid is hydrogen-bonded to two other molecules, one at each end, to give infinite chains running parallel

Table II. Hydrogen Parameters^a

Atom	x	у	Z	B, A^2
H(1) H(2) H(3)	$ \begin{array}{r} 0.313 \\ -0.153 \\ -0.110 \\ 0.102 \end{array} $	-0.123 -0.152 -0.229	0.021 0.121 -0.057	1.8 2.0 1.9
H(4)	0.623	0.061	0.392	4.05

^a Standard deviations are 0.007, 0.006, and 0.006 for x, y, and z coordinates, respectively. ^b Assigned.

to [101]. The crystal structure is shown in Figure 1; one molecule is shown in Figure 2. The hydrogenbonded atoms C(1), C(3), O(1), O(2), O(1'), O(2'), C(3'), and C(1') are coplanar, no atom deviating by more than 0.009 A from a least-squares plane. The conformation of the molecule is such that atoms C(1), C(2), C(3), O(1), and O(2) are coplanar to within 0.01 A. The cyclobutane ring is planar.

Figure 2. One molecule viewed perpendicular to [100].

Bond distances and angles are given in Table IV. The standard deviations estimated from the leastsquares results are 0.006 A for C-C bonds, 0.005 A for C-O bonds, 0.04 A for C-H bonds, and 0.3° for angles not involving hydrogen. These standard deviations assume random errors in the intensity data and should be considered lower limits. Bond lengths, except those involving hydrogen, ¹⁷ were corrected for thermal motion assuming one atom to ride on another.¹⁸ The dimensions of the carbonyl group after correction are in good agreement with values found in other satu-

⁽¹⁷⁾ The temperature factors for hydrogen have little physical meaning since the atomic scattering factors used are for the free atom; see L. H. Jensen and M. Sundaralingam, *Science*, **145**, 1185 (1964).

⁽¹⁸⁾ W. R. Busing and H. A. Levy, Acta Cryst., 17, 142 (1964).

Table III. Observed (FOBS) and Calculated (FCAL) Structure Factors $\times 10^2$

K I FORS FCAL	K I EORE					
	N L FUD3	PCAL K L	FUDS FCAL	K L FUBS	FCAL	K L FUBS FCAL
2 0 6294 6622	2 -0 047	5004 3 - 3 590 (212 218	4 = 1 139	163	2 - 3 931 945
4 0 401 369	5 - 6 170	202 6 2	212 210	0 = 2 692	D/8 540	5 = 5 791 728 4 = 3 580 703
6 0 349 328	1 =7 1520	1525 4 -2	312 222	2 = 2 252	100	4 = 3 = 374 = 703
1 1 802 706	1 = 7 (920)	1929 8 = 9	2652 2616	2 - 2 200	290	6 - 3 204 241
2 1 1672 1500	2 -7 973	945 0 -4	2075 2014	3 - 2 400	207	0 - 4 - 577 - 666
2 1 1072 1099	7 590	501 2 -4	1544 1428	4 - 2 200	280	2 - 4 - 223 - 213
3 1 1202 1199	4 = 7 980	<u> </u>	1940 1420	7 2 273	207	2 -4 223 213
4 1 1007 912	0 -8 181	220 3 -4	202 154	1 - 2 139	10/	3 = 4 353 362
5 1 273 227	0 0 602	630 4 -4	180 147	1 = 3 1064	994	
0 1 352 352 7 1 100 340	1 0 1324	1315 5 -4	228 315	4 - 3 822	835	5 - 4 446 449
7 1 199 260	2 0 1956	1977 6 -4	328 353	5 - 3 450	463	6 -4 196 224
8 1 182 218	3 0 3038	3021 1 -5	1258 1179	6 - 3 958	923	1 -5 297 284
0 2 691 762	4 0 1330	1269 2 -5	570 517	7 = 3 243	255	2 -5 337 378
2 2 2185 2222	5 0 2015	1940 4 -5	201 219	0 -4 358	411	3 -5 442 436
4 2 1692 1643	6 0 203	193 6 -5	619 638	2 - 4 132	202	4 -5 476 493
0 2 350 323	1 0 113	/64 0 -6	505 474	3 - 4 452	474	5 -5 264 259
1 3 4177 4159	1 1 619	628 1 -6	141 122	4 - 4 264	251	0 = 6 972 1033
2 3 2159 2056	3 1 1 3 4 2	12/4 2 -6	455 428	5 - 4 624	586	1 =6 247 276
3 3 610 571	4 1 637	569 4 -6	355 359	7 -4 226	198	2 -6 636 638
4 3 1290 1185	5 1 265	215 5 -6	271 311	1 -5 314	245	3 -6 348 353
5 3 462 450	6 1 494	512 1 -7	1249 1186	2 -5 923	936	1 -7 397 409
0 4 719 693	7 1 319	342 2 -7	9/3 967	4 = 5 536	488	2 -7 251 282
1 4 379 365	8 1 143	165 3 -7	671 660	0 -6 464	440	4 -7 291 356
2 4 341 313	0 2 4866	4906 4 -7	707 713	3 -6 421	452	0 -8 348 403
3 4 606 577	1 2 604	593 0 - 8	702 732	4 -6 289	343	2 -8 327 386
4 4 215 197	2 2 2 0 7 3	2019 2 - 8	350 345	5 - 6 647	703	0 0 319 308
6 4 439 446	3 2 588	611 3 -8	214 240	1 -7 369	376	1 0 466 517
1 5 597 564	4 2 446	400 0 0	1657 1618	2 -7 254	258	2 0 293 2 6 5
2 5 192 188	5 2 382	392 1 0	1164 1161	3 -7 414	407	3 0 726 771
3 5 1008 997	6 2 189	172 2 0	1299 1171	4 - 7 457	510	5 0 298 311
4 5 159 162	7 2 149	123 3 0	627 584	1 -8 351	369	6 0 203 238
5 5 602 557	1 3 1583	1518 4 0	343 229	2 -8 192	168	1 1 1066 1036
0 6 452 550	2 3 1 1 6 0	1116 5 0	183 244	3 - 8 495	596	2 1 278 259
1 6 824 805	3 3 1178	1143 6 0	244 278	0 0 1149	1113	3 1 345 313
2 6 724 748	4 3 1012	953 8 0	224 293	1 0 1061	1003	1 2 452 441
3 6 1336 1297	6 3 448	458 1 1	448 421	2 0 614	584	2 2 333 343
4 6 704 692	7 3 490	478 2 1	2467 2383	3 0 1018	966	3 2 556 602
5 6 438 433	0 4 1295	1216 3 1	964 909	6 0 351	344	4 2 294 339
4 7 401 424	2 4 1 3 4 4	1269 4 1	1212 1127	7 0 150	165	1 3 1360 1391
0 8 347 390	4 4 924	908 5 1	358 352	1 1 1638	1592	2 3 205 223
H = 1	5 4 265	245 6 1	159 133	2 1 229	200	3 3 721 734
1 -1 5075 5192	7 4 295	350 7 1	226 225	3 1 605	552	0 4 396 433
2 -1 2508 2505	1 5 1013	976 0 2	117 164	4 1 319	324	2 4 274 287
3 -1 820 791	2 5 202	232 1 2	313 342	6 1 328	358	H = 5
4 - 1 957 951	3 5 269	243 2 2	265 238	0 2 1413	1412	1 -1 483 517
5 -1 318 336	5 5 430	474 3 2	1288 1277	1 2 717	690	3 -1 197 181
0 -2 3403 3500	6 5 236	258 4 2	348 358	2 2 1064	1043	4 -1 259 317
1 -2 653 609	0 6 569	600 5 2	1127 1134	3 2 821	814	2 - 2 246 265
2 -2 1831 1795	1 6 149	182 6 2	146 181	4 2 485	452	4 - 2 401 425
3 = 2 432 321	2 6 466	521 7 2	410 490	5 2 180	172	1 -3 582 573
4 = 2 892 754	3 6 468	470 1 3	712 705	1 3 276	268	3 - 3 575 560
5 -2 226 230	4 6 218	248 2 3	810 787	2 3 1406	1374	4 - 3 156 130
6 -2 280 303	5 6 530	560 3 3	762 721	3 3 493	501	5 = 3 - 215 - 213
1 -3 989 872	2 7 189	213 4 3	248 245	4 3 000	1011	0 -4 1154 1170
2 - 5 580 578	4 7 244	279 5 3	155 116	5 3 260	269	1 = 4 222 249
3 -3 554 536	0 8 371	465 7 3	278 345	6 3 261	346	2 -4 710 482
4 - 3 20 - 230	1 2 222	276 0 4	682 649	0 4 1624	1520	3 -4 375 34/
F - 3 604 693		2,0 0 4	801 703	2 4 1024	1049	1 - 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5
	1 -1 1074	1074 3 4	1305 1344	2 7 1020	1040	3 _E 120 000
	1 -1 10/6	1102 4	1272 1904	5 4 194 A A 774	101	
7 - 3 261 263	2 -1 1193	1185 4 4	010 015	4 4 <u>2</u> 76	314	0 = 6 248 264
1 -4 1343 1265	4 =1 1986	1961 5 4	003 865 349 357	- 5 4 256	276	z = 0 308 316
	5 -1 367	200 6 4	248 256	1 7 361	398	1 = 7 401 480
3 -4 1881 1853	6 -1 1194	1233 1 5	173 176	2 5 407	408	o 0 178 194
4 - 4 578 528	8 -1 289	316 3 5	272 257	0 6 196	219	4 0 247 272
5 -4 418 366	0 -Z 1426	1439 0 6	654 720	1 6 254	271	1 1 304 338
6 -4 151 191	1 -2 1228	1180 1 6	208 212	H = 4	• · · -	2 1 210 227
7 -4 197 208	2 -2 1118	1082 2 6	315 363	1 -1 147	115	0 2 226 258
1 -5 1473 1400	3 -2 744	729 3 6	301 308	z -1 428	425	1 2 156 169
2 -5 429 406	4 -2 223	178 1 7	673 752	3 -1 630	615	2 2 251 261
3 -5 849 808	5 -2 644	631 2 7	140 151	5 -1 520	563	3 1 456 529
4 -5 165 163	6 -2 140	093 H	1 = 3	0 -2 847	786	H = 6
5 - 5 436 444	7 -2 666	687 l - l	2406 2300	2 -2 350	300	0 - 2 264 275
0 -6 1543 1530	1 -3 694	592 2 - 1	745 671	4 -2 180	188	0 -4 365 405
1 -6 310 333	2 -3 397	406 3 -1	965 865	1 -3 1293	1283	

rated carboxylic acids.¹⁹ The O-H distance of 0.81 A has little meaning since the hydrogen atom was not well (19) M. A. Higgs and R. L. Sass, *Acta Cryst.*, **16**, 657 (1963).

resolved in the difference map. Both the corrected (1.552 and 1.567 A) and uncorrected (1.548 and 1.562 A) C-C bond lengths in the cyclobutane ring are larger

Table IV. Bond Lengths and Angles

Atoms	Bond Obsd	length, A Temp corrected	Atoms	Angle, deg
C(1)-C(2) C(1)-C(2') C(1)-C(3) C(3)-O(1) C(3)-O(2) O(1)-O(2') C(1)-H(1) C(2)-H(2) C(2)-H(2) C(2)-H(3) O(2)-H(4)	1.562 1.548 1.494 1.315 1.214 2.658 1.05 1.01 1.03 0.81	1.567 1.552 1.494 1.345 1.238 2.662ª	$\begin{array}{c} C(2)-C(1)-C(2')\\ C(2)-C(1)-C(3)\\ C(2')-C(1)-C(3)\\ C(1)-C(3)-O(1)\\ C(1)-C(3)-O(2)\\ O(1)-C(3)-O(2)\\ H(1)-C(1)-C(2)\\ H(1)-C(1)-C(2')\\ H(1)-C(1)-C(2')\\ H(2)-C(2)-C(1)\\ H(2)-C(2)-C(1')\\ H(2)-C(2)-C(1')\\ H(3)-C(2)-C(1)\\ H(3)-C(2)-C(1')\\ C(3)-O(2)-H(4)\\ \end{array}$	90.5 113.7 116.2 124.1 113.0 122.9 118 112 106 114 116 108 116 114 115

^a With the correction applied assuming the two atoms to move independently, this distance becomes 2.717 A.

than 1.537 A, the average value of a C-C single bond given by Sutton. 20

The present work represents the third structure determination of a cyclobutane derivative in which the ring is planar, not part of a condensed polycyclic system, and not involved with endo- or exocyclic unsaturation. The other two, tetracyanocyclobutane⁴ and tetraphenylcyclobutane,^{1,2} crystallize in the same space group $(P2_1/c)$ with the ring lying on a center of symmetry. The C-C bond lengths in the rings are comparable to ours: 1.566 ± 0.015 and 1.573 ± 0.015 A for tetraphenylcyclobutane; 1.547 ± 0.002 and 1.561 \pm 0.002 A for tetracyanocyclobutane. Our work thus confirms the existence of longer-than-normal C-C single bonds in simple, planar cyclobutane derivatives.

Acknowledgment. This work was supported by the National Science Foundation under Grant GP-4550. We are indebted to Professor K. N. Trueblood for bringing this problem to our attention.

(20) L. E. Sutton, "Tables of Interatomic Distances and Configura-tion in Molecules and Ions, Supplement 1956-1959," The Chemical Society, London, 1965.

γ Radiolysis of Cystine in Aqueous Solution. Dose-Rate Effects and a Proposed Mechanism¹

John W. Purdie

Contribution from the Defence Chemical, Biological and Radiation Laboratories, Defence Research Board, Ottawa, Canada. Received June 1, 1966

Abstract: Solutions of L-cystine (CySSCy) in water (3 \times 10⁻⁴ M) were exposed to 10,000 rads of Co⁶⁰ γ rays. G values were determined for the following products: CySO₂H, CySO₃H, CySO₂SH, CySSO₃H, CySH, and CySSSCy. The effect of OH and e_{aq} - scavengers on the yields was also investigated. The yields of CySO₂H, CySO₃H, and CySH were dose-rate dependent in the range 1 to 800 rads/min. A mechanism for the radiolysis is presented and discussed: CySOH appears to be the main precursor of both CySO₂H and CySO₃H with O₂- participating in formation of the latter. CySSSCy, the yield of which was independent of dose rate, is probably produced from cystine by reaction with CyS radicals.

The disulfide bond of cystine, which is essential to I the tertiary structure of many enzymes and proteins, is particularly sensitive to ionizing radiation. Eldjarn and Pihl² have postulated that the cysteine and cystine residues of proteins form mixed disulfides with radioprotective compounds such as cysteamine. During radiolysis the protective residue reacts readily with free radicals, thereby protecting the protein.

Radiolysis of cysteine, which is also a radioprotective compound, has been subjected to detailed study recently.³ Aqueous solutions of cystine have been investigated by several workers,⁴ but many of the early

(a) J. E. Packer, J. Chem. Soc., 2320 (1963); (b) A. El Samahy,
(c) D. A. Armstrong and V. G. Wilkening, Can. J. Chem., 42, 2631 (1964); (d) M. Matsuura and K. Muroshima, Sci. Papers Coll. Gen. Educ., Univ. Tokyo, 14, 183 (1964).

(4) (a) W. M. Dale and J. V. Davies, Biochem. J., 48, 129 (1951); (b) A. J. Swallow, J. Chem. Soc., 1334 (1952); (c) S. L. Whitcher, M. Rotheram, and N. Todd, Nucleonics, 11, 30 (1953); (d) P. Markakis studies involved high doses. The following products were identified by Markakis and Tappel:4d cysteine, H₂S, sulfur, sulfate, ammonia, and alanine. A detailed analysis of the initial products was first achieved by Grant, et al.,⁵ using paper chromatography and electrophoresis. Similar studies were conducted by Forbes and co-workers6 who examined both ultraviolet photolysis and radiolysis of cystine solutions. Brdička, et al.,⁷ have also studied the radiolysis of cystine solutions using similar methods. Approximate G values were estimated by Grant, et al., 5 by comparing the spots of products on paper chromatograms with those from standard solutions. The present study was undertaken to determine the yields more accurately and elucidate the

⁽¹⁾ Issued as DCBRL Report No. 508.

⁽²⁾ L. Eldjarn and A. Pihl in "Mechanisms in Radiobiology," Vol. II, M. Errera and M. Forssberg, Ed., Academic Press Inc., New York, N. V. 1960, p. 242.

and A. L. Tappel, J. Am. Chem. Soc., 82, 1613 (1960); (e) J. C. Fletcher

and A. Robson, *Nature*, **195**, 1308 (1962). (5) D. W. Grant, S. N. Mason, and M. A. Link, *Nature*, **193**, 352 (1961).

^{(6) (}a) W. F. Forbes and W. E. Savige, *Photochem. Photobiol.*, 1, 77 (1962); (b) W. F. Forbes, D. E. Rivett, and W. E. Savige, *ibid.*, 1, 97 (1962).

⁽⁷⁾ R. Brdicka, Z. Spurny, and A. Fojtik, Collection Czech. Chem. Commun., 28, 1491 (1963).